If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-5=0
a = 4; b = 2; c = -5;
Δ = b2-4ac
Δ = 22-4·4·(-5)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{21}}{2*4}=\frac{-2-2\sqrt{21}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{21}}{2*4}=\frac{-2+2\sqrt{21}}{8} $
| 9x+7=117 | | 110-2y=2y.750 | | (8x-8)°=(7x+8)° | | 1^5x=-10 | | 26.25y=10-× | | 26.25y=10-20× | | Y=10-20x | | 18+10x=12x+8 | | x^2+25=81 | | x+18+5x=8x-16 | | 1/3=n+-2 | | 5x+10x-6=17x-20 | | x/3+15=44 | | 5x+11x+14=17x+4 | | x+17+4x+2=6x+2 | | 4n-12=-5+15 | | V=1/2x^26 | | 19=3w-10 | | b2+11b=0 | | 2+6w=6w+2 | | 5x+5=2-(6x-8) | | 3u-u=6 | | 4x+6=6-(9x-9) | | -44=x/6 | | 44=v/5+16 | | 44=v/5+15 | | 22.5+y=10 | | x-4/7=-5 | | 50=5x-7+4x | | -4a+44=24 | | x+16=6x-8 | | 5x+.5x=140 |