If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x-8=0
a = 4; b = 2; c = -8;
Δ = b2-4ac
Δ = 22-4·4·(-8)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{33}}{2*4}=\frac{-2-2\sqrt{33}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{33}}{2*4}=\frac{-2+2\sqrt{33}}{8} $
| 8x-6=2(x+9) | | 2x+18=7x=30 | | 205x+4000=102.5 | | 9x-7=-17+9x | | 0.2x−0.3=2.9 | | (x)+(7/12)=-(5/6) | | 6(4x-3)=6 | | (x)+(7/12)=-5/6 | | 16x−4=12 | | (x)+7/12=-5/6 | | 6x−2=10 | | 150x=6000 | | x+7/12=-5/6 | | 205x=150x | | 10j-9j=11 | | 3c^2-20c+12=0 | | 4(2x+7)=10-(x+8) | | 7x−8=48 | | 8-4/5x=14 | | 43x+51=126 | | (21/7)p=–3 | | 4a^2-a-9=0 | | (–21/7)p=–3 | | -3x+9=3x+2 | | -6(-c)+3(2c-7)=1 | | 4(b-3)+2.3b=4b | | .3(x+60)=61.5 | | 4(b-3)*2.3b=4b | | .3(x+60)=31.5 | | 31=x+8/2 | | 9s−7s=8 | | 3h=(2h-8)/4 |