If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+32x+60=0
a = 4; b = 32; c = +60;
Δ = b2-4ac
Δ = 322-4·4·60
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8}{2*4}=\frac{-40}{8} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8}{2*4}=\frac{-24}{8} =-3 $
| -2x2+40x-198=0 | | 2x+72=18x | | -16x^2+30=-8x+15 | | -(n-8)+2n=5(n+3) | | (X+6)^2/5=(25x)^1/5 | | 38+7m=8(1m+4) | | 3(x+1)-3(2x-2)=24 | | 2a^+a-6=0 | | -31+3m=-2m+54 | | 2x+7=74° | | 3(x+1)-x=2(x+3) | | 5x+x²=100 | | 3x+3-x=2x+6 | | 12(y+4)=60 | | 9x-10x=x^2+4x | | -5(2-1w)=10 | | 8(x+5)-x=-2 | | 2t+10-6t=-22 | | 2/3x-1=7/9x | | 2/3(x+5)=x+10 | | 3.6x-19.42=2.9 | | 2(5t+10)=24t-8 | | 12^2+13x=15x | | (x-6)²-144=0 | | 4.9x-7.86=3.9 | | X+(x•.09)=840 | | x-5/2-x+4/4=1 | | (x-6+12)(x-6-12)=0 | | 5/3+2/3x=53/18+7/6x+5/6 | | 6(4z+2)=3(6z+4) | | (x+6)(x-18)=0 | | 22x-33=(12x+60 |