If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+3x-1=0
a = 4; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·4·(-1)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-5}{2*4}=\frac{-8}{8} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+5}{2*4}=\frac{2}{8} =1/4 $
| y/2=5(3-y) | | F(x)=2x^+3x-4 | | 4^2x-8*4^x+16=0 | | 9x^2+27x-16=20 | | (3/n)+3=(4/n)+1 | | 3x+5/2=4x | | B➗7=8;b=56 | | 4(1+2x)=-1+7x | | (W/9)+(4/x)=4 | | 8x-23=5x-11 | | 7+n=11n | | -4x+14=-54 | | 7x+4=151 | | -52x+1.25=24.8 | | -5.2x+1.2=24.8 | | /6a-8=4a+6 | | v-13=-8 | | 1/3(4x-5)=18 | | -8=v-13 | | 2,5/10=x/10 | | (4x-11)=√(29-2x) | | √(4x-11)=√(29-2x) | | 4^x-3.2^x+2=0 | | 3.8x=-33.82 | | 43-16=x | | 4+1x=-4-1x | | 5x-3+3x=-(x+3)+5 | | 4x^-4-7x^-2-36=0 | | 3^x+20=9^x | | -1(4x-1)=13 | | 10x2-3x-1=0 | | 11-4x=1/3x-19 |