If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+3x-26=0
a = 4; b = 3; c = -26;
Δ = b2-4ac
Δ = 32-4·4·(-26)
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-5\sqrt{17}}{2*4}=\frac{-3-5\sqrt{17}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+5\sqrt{17}}{2*4}=\frac{-3+5\sqrt{17}}{8} $
| G-p=5/2-5 | | 2x/3-3/2=x/2+1/3 | | 3x3-7=2x3+1 | | 4=x-2.5 | | 5x+24x=5 | | G=5/2(p-50 | | 11=y+5÷3 | | 4.3=2.5-0.4y | | 11=y+5/3 | | 1/4m+2=3/4m+6 | | |2x-8|=|5x+17| | | 9=x+3/2 | | x=x÷25-120 | | 2x*(2x^2+3)+4x^2-3*(2x^2+1)=0 | | 1/5x-6=3/5x-10 | | 5x+12=52−5x | | x=(x/25)-120 | | 25=2/5x+24 | | 9(2360+w)=21735 | | -15x^2-46-13=0 | | -3(-x+7)=5x=-21 | | 4a+3(a+5)=29+5a | | 1.5x+3=x-5 | | 5x+(4x-19)=14 | | 5x=2(4x-19)=14 | | 3x2+2+8x=0 | | 2x-(3-3x)^2=-1 | | 2/3=x/21 | | 10x=-16+8x | | |2x+3|=1-x | | 14=7m | | 2(10+2x)=15 |