If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+3x=0
a = 4; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·4·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*4}=\frac{-6}{8} =-3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*4}=\frac{0}{8} =0 $
| 1/2(6g+2)=12 | | 2y/3=5y-104 | | 3c/4=6c-168 | | 12x-8+12x-8=104 | | 104=12x-8 | | 67=-3x+70 | | 2a/3=4a-30 | | 4x+9=-2x+1 | | 5x/6=6x-186 | | c/5=3c-98 | | w/4=6w-138 | | 4x+9=-2+1 | | y/7+3=2 | | n/4=4n-60 | | 9=30a | | 4e-77=e/3 | | 5x+20=3/4+1 | | y/3=4y-77 | | 13=-7+5x | | -2-3(x-4)=3/4x+1 | | 8+u/4=12 | | (-2-2i)^2= | | 2x^2+19x-46=0 | | 7-x/3=x/2+9= | | 1/2x+3/4=1/6x+1/3 | | 16x=8+4x | | (2x+10)(4x-3)=0 | | 19-6x=71 | | 6d-89=2d/3+7 | | 5r-183=4r/5+6 | | 8x+12=10+11x | | 2x/3+3=4x-57 |