If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+43x+63=0
a = 4; b = 43; c = +63;
Δ = b2-4ac
Δ = 432-4·4·63
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-29}{2*4}=\frac{-72}{8} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+29}{2*4}=\frac{-14}{8} =-1+3/4 $
| 4(x-11)=56 | | 6x-8-9x-9=-18 | | 6x+29=623x+124=135 | | 6(2=x)=30 | | -5n+6=2-3n | | 10x2-12x=0 | | m/11-8=11 | | x=16/8 | | 8x-20=x+15 | | 3x-1)(x-1)=96 | | 8=-2(-3)+b | | x+29=3 | | x+.05x=8.96 | | 3x-8°(2x1°)= | | x+36=75 | | 3x-8°(2x1°)=180 | | T=149.97+0.7m | | 6x+4(-2x+5)=148 | | 4m-11=2m+7 | | 19-13n=82 | | 0=-2x2+18 | | x+37=837 | | 8j−4=7j | | 5h=3+4h | | X+1/3x+x-30=180 | | (4x-13)+(3x+19)=180 | | –90=–2v–8v | | -178=-5x4(-4x-13 | | 6x+12=14x-8 | | a2+12a=-32 | | x+13=4x+20 | | 4.7h=47 |