If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+48x+54=0
a = 4; b = 48; c = +54;
Δ = b2-4ac
Δ = 482-4·4·54
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12\sqrt{10}}{2*4}=\frac{-48-12\sqrt{10}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12\sqrt{10}}{2*4}=\frac{-48+12\sqrt{10}}{8} $
| -20/35x-3/35x+7/35x=-48 | | x+50=158 | | 13x+2=14x+9 | | e3.6=1.2 | | 5x-14=65 | | 3(x-4)=-1/4(24-6x) | | –12p-20p+7p+11p=–14 | | 4x²-128=0 | | (4x^2–9)÷(2x+3)= | | 59=8s−–19 | | -4x+13=76+5x | | -0.55x+0.25x=6.3 | | 13x+2+14x+9=180 | | 4x²+23=-1 | | -6x+8=3x−10 | | 2x^2=-45 | | ‑4x+5=9 | | -0.64x=-48 | | -5(17q-5)-5q=5(-13q+4) | | 7x^+8x=x^2 | | 7(4–8x)=-56x+28 | | n+(-9)=10 | | 1+7x=6(x+1) | | 5+6=4p-8 | | 2/3+1/3y=3/2y-4 | | −44+m=100 | | 5x2-100=20 | | -2r-13r+9r=6 | | 1/3(2x-1)=1/7(11-8x) | | 7.11=2-3g | | 1/2(x+4)-x=-1 | | ‐14n=‐16 |