If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+4=20
We move all terms to the left:
4x^2+4-(20)=0
We add all the numbers together, and all the variables
4x^2-16=0
a = 4; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·4·(-16)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*4}=\frac{-16}{8} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*4}=\frac{16}{8} =2 $
| x+(x+2)+(x+4)=2(x+4)-30 | | 10=0.1w+9 | | 3x-23=11 | | 6n-8=3n+12 | | 8-2(x+2)=2x | | 1=(50b) | | 4n=3n-11 | | 10=(0.1w)+9 | | 76-x+x=180 | | 2-7(4x+5)=-33+5x | | 2-7(4x+2-5)=-33+5x | | 2n=99 | | 16v+240=9(2v) | | 2+3(x-1)=8 | | 2x-5x-1=12 | | (3a)+3=30 | | -50÷-5=x | | (5x+1)=35(3x+5) | | 16-3y=2.6 | | 50+5y=-1 | | 3x=6=-6 | | 42=3(3-2x) | | 10x-x=29 | | 16x-3=13x-12 | | 9x-6-16x=-18+4x-3 | | 83+n=180 | | 5g=20/5 | | 16-5x=x+(-8) | | 14x+7=14x | | 3/4x+1/6x=11 | | 12=a-3.7 | | 3p-(10-p)=2 |