If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+4x-24=0
a = 4; b = 4; c = -24;
Δ = b2-4ac
Δ = 42-4·4·(-24)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-20}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+20}{2*4}=\frac{16}{8} =2 $
| 7-6x=5x+29( | | 4x-12=6x-3 | | 54=w+8w | | x2+4x-14=0 | | -4n-6=12 | | 17=-3+u/5 | | 2(x-3)^2=5 | | 2x+3=2/3+x | | y+5=0+3 | | 9x-(2x-30)=93 | | x2-12x+4=20 | | 3x-1=16x16 | | 2(x-3)^2-5=0 | | 2e+1+63+54=180 | | 3(3y-3)-2(y+2)=4-3(y+2) | | x=24=16 | | 42x+3-9=11 | | 5x+20=2x-8 | | 26+p=180 | | 4x+3(2x-5)=25 | | 5x+2x+1=23 | | 2(x-3)-25=4(x-9) | | -58=-4/u | | -x=6=10 | | 3v+17=47 | | v/5+13=20 | | Y=|x+2| | | 42=3v-15 | | 3x+(x-25)+x=250 | | 6x|7-x=x|14-9|2 | | t+1/2=-1 | | 14-4=5+x/2 |