If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+4x=500
We move all terms to the left:
4x^2+4x-(500)=0
a = 4; b = 4; c = -500;
Δ = b2-4ac
Δ = 42-4·4·(-500)
Δ = 8016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8016}=\sqrt{16*501}=\sqrt{16}*\sqrt{501}=4\sqrt{501}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{501}}{2*4}=\frac{-4-4\sqrt{501}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{501}}{2*4}=\frac{-4+4\sqrt{501}}{8} $
| 5x-14=7-2x | | 4x+4x=500 | | 5e+5=-25 | | -8.8+a=14.3 | | 17a-7(a+1)=4(a-2) | | -5/8=x25/18 | | 1/3(9-27x)=24-12x | | 3a-5=-8 | | 32x=1/4(3/4) | | -5+x÷2=1 | | 4x+14x´+x=0 | | 2(h-8))-h=h-16 | | 8a+6=4a-14 | | y+y+10=50 | | 6(3-z)=2z+4-z | | 2x-28=6x+16 | | 5|x+1|+6=21 | | 3e=43 | | 1÷3y+1÷4=5÷12 | | 6d-4(3d+5)=0 | | 23-3t=20 | | 4(-x=4)=12 | | x^2+8x^2-9x-72=0 | | 10x+10=9x-3 | | 1/5t-3=(-17) | | 10p-30=(12+4p)-7 | | 10=7-q | | 2=x-6+1=x | | Y=2|x-3| | | y^2-7y-5=0 | | m2+6=10 | | 9+m÷3=2 |