4x2+54x+110=14x+614x+6

Simple and best practice solution for 4x2+54x+110=14x+614x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x2+54x+110=14x+614x+6 equation:



4x^2+54x+110=14x+614x+6
We move all terms to the left:
4x^2+54x+110-(14x+614x+6)=0
We add all the numbers together, and all the variables
4x^2+54x-(628x+6)+110=0
We get rid of parentheses
4x^2+54x-628x-6+110=0
We add all the numbers together, and all the variables
4x^2-574x+104=0
a = 4; b = -574; c = +104;
Δ = b2-4ac
Δ = -5742-4·4·104
Δ = 327812
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{327812}=\sqrt{4*81953}=\sqrt{4}*\sqrt{81953}=2\sqrt{81953}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-574)-2\sqrt{81953}}{2*4}=\frac{574-2\sqrt{81953}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-574)+2\sqrt{81953}}{2*4}=\frac{574+2\sqrt{81953}}{8} $

See similar equations:

| 5x−32−23(5+3x5)=22−X5+2x3−12+3x | | 10x-4x-8x=11+8x | | |3p-9|=|2p+4| | | u+4/3+4-1/4=u-3/5=1 | | 4y-5=2y-1 | | 5x+7x–21=63–2x | | -12+i/4=9 | | 4-k/7=-3 | | 3/2x-1/3=1/6 | | 1.5(2^x)-3=7.6 | | 7(x+2)=5x+22 | | -6-x1/9=18 | | 5m+32=9m-4 | | a/2+2/3=4 | | 3w^2=70 | | F(x)=1.2(3.6)^x+1 | | 60+30=70x | | 5x^2-12x-50=0 | | 3(x-15)=12 | | X+7=2(x-5) | | 10x+5(x+6)+25(2x)=485 | | 4=10v−6 | | 8b+1=81 | | -22/(x-4)=-11/x | | -2(10x-15)=1.5(-40x+60) | | 7/6n+1/2n=5 | | 0.5(5t-5)=(t+5)/4 | | 2-16t=6(4 | | x+5+4x=55 | | .10x+.05(x+6)+.25(2x)=4.8565x+30=485 | | -2t^2+3t+10=0 | | 6x-49=5x-27 |

Equations solver categories