If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+56x-20=0
a = 4; b = 56; c = -20;
Δ = b2-4ac
Δ = 562-4·4·(-20)
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-24\sqrt{6}}{2*4}=\frac{-56-24\sqrt{6}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+24\sqrt{6}}{2*4}=\frac{-56+24\sqrt{6}}{8} $
| 3.7+2/75k=27.35 | | 6y-6=4y-4 | | 40=-v/3 | | 0.13*x=800 | | 2a-97=a-29 | | 5a-9=2a+18,8 | | 2p-p=4 | | 2.20=8+4x | | -50=x/4 | | 9x-156=1.5x+36 | | -12=3m-3+6m | | g4=3,2 | | 8u-4+u+49=180 | | 2.5x+120=130.75 | | Y=2x^+8x-10 | | 3x+5+7x+6=6x+23 | | 4x+2(×-3)=4×+2×-11 | | 20x+1800=100x+600 | | 4=(2x/3+8)=40 | | -6n+3n=18 | | (3c+3)/(2c−1)=(c+1)−8/(2c−1) | | -10=-14+4x | | -55=-y/4 | | 10-9x^+4x=-6x^ | | 60x+20=20x+100 | | Y^2-11y=-24 | | 45x-7=12 | | 3w-66=w | | a/3=14 | | -9=-2m+6-3m | | 6y=18.4 | | X^2+x-110=0-1 |