If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+56x=93
We move all terms to the left:
4x^2+56x-(93)=0
a = 4; b = 56; c = -93;
Δ = b2-4ac
Δ = 562-4·4·(-93)
Δ = 4624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4624}=68$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-68}{2*4}=\frac{-124}{8} =-15+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+68}{2*4}=\frac{12}{8} =1+1/2 $
| 35/40y=48/40 | | .5f=7070 | | 9b=24 | | 5(3a-3)=2(4a+1)+60 | | x/3+(x-1)/4=2+x | | -2p=p | | 5÷4-t=3t | | 45x=2x+6=96 | | 3=-3/4•8+b | | 4x2+56x=0 | | 5/4-t=3t | | 2(3x-8)-7(6-x)=6 | | -4/3u2/3=-3/4u-1 | | (2x-1)^2=0 | | -3p=p | | 20^3x=5 | | 3/5x-6=-2/5(x-10-7) | | x/9+5=4-x/4 | | 8.2w=-17 | | -7c-14c+18=-18-15c | | -b+20=-15+4b | | x(R1+R2)=R1R2 | | 5-1/9x=13/9 | | -19s=-20s-17 | | 5-x^2/x=2 | | 10x-2=3x-19 | | 160=10x+100 | | x=-5x-39=11 | | 6x^2+11x-18=0 | | 6x^2+11x+18=0 | | 460=23m | | 1/4(28x-12)-(x+4)=0 |