If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+5=165
We move all terms to the left:
4x^2+5-(165)=0
We add all the numbers together, and all the variables
4x^2-160=0
a = 4; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·4·(-160)
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*4}=\frac{0-16\sqrt{10}}{8} =-\frac{16\sqrt{10}}{8} =-2\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*4}=\frac{0+16\sqrt{10}}{8} =\frac{16\sqrt{10}}{8} =2\sqrt{10} $
| x-20+x-10+21+42+29+x+14+x=180 | | x+12÷4=x+2÷5 | | -7x+3x=7x+21 | | -2+6x=-4x+2 | | -11=25=-4.5z | | 13m+3m-5m-2m=9 | | -5x+6=67 | | 6=n-27 | | 13y+4=6 | | 3^(x-2)=17 | | y4−9=7 | | 5k=6k-4 | | -11x-12.9=-23.6+9x | | 2k-2k+2k+4K-k=20 | | x+12/4=x+2/5 | | 4(c-12)=8 | | 4x+12+135=180 | | 6s+20+7=-18+9s | | b+b-b=6 | | 4x-x+3=3x+7 | | 5+h=8 | | 8x-2-6x=-8 | | -15=5(s-5)+5s | | 24p=56 | | 15z-13z=8 | | (3x+23)+95+(7x-4)+(9x-6)+90=540 | | 6p+30=7(p+6)-5 | | 10a+4a-12=86 | | 2x+6+3x+-6=90 | | 9a=15a | | 9y+11=6y+20 | | 4z/9+4=-2 |