If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+5x-1=0
a = 4; b = 5; c = -1;
Δ = b2-4ac
Δ = 52-4·4·(-1)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{41}}{2*4}=\frac{-5-\sqrt{41}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{41}}{2*4}=\frac{-5+\sqrt{41}}{8} $
| -5/3=1/4y-9/5 | | 5/6(30x+18)=25x+15 | | (-5/3)=(1/4)y-(9/5) | | 2a+3=5+a | | 64x^2-69=0 | | 8(2x−10)+18=4x+22 | | x2-11x-80=0 | | -9g=-10g-8 | | 200=-5t^2+100t+15 | | 3x2-2x-1=0 | | 2(x-1)-x+1=0 | | 14^(p-8)=62 | | 3x+2=20x=6 | | 7y+8=9+5y | | -3*x=17 | | 14^p-8=62 | | 2y−4=12 | | 8-x=7x2 | | 9b-7=10b | | 4*x+5=11 | | (x-5)^2+3=78 | | (2/5)x-2=8/3 | | 6x-9=8x=21 | | 6^x+3-2=14 | | Y=1/4x3-2 | | (X-3)-(x-5+2x=0 | | (3x+25)+(8x+4)= | | 5x^2-10x-77=0 | | 9.38=(0.7+2x)*(0.3+2x) | | 100000=x-(.15x) | | a=50+(5)(1-1) | | 5(g-7)=0 |