If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+5x-4=0
a = 4; b = 5; c = -4;
Δ = b2-4ac
Δ = 52-4·4·(-4)
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{89}}{2*4}=\frac{-5-\sqrt{89}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{89}}{2*4}=\frac{-5+\sqrt{89}}{8} $
| 3(x+2)=2(x+5)-9 | | 17-20u+10=17u+8(-6u-20) | | 27^(x+2)+9^x=81 | | 11g=-3(-4g+1) | | D/K/A=2x/5x/8x | | -10x+17=-3/4(8x+12)+2/3(6x+12) | | 6(x+11)+11=53 | | -t+3t-6=19-3(-t+11) | | -10x-1=-3/4(8x+12)+2/3(6x+12) | | -2x+17=-3/4(8x+12)+2/3(6x+12) | | 10x-23=9x-15 | | 5y-2=3y2y+3 | | 3x^2+12x-3=5 | | -6(3h+19)=-10h+19+19 | | 10x23=9x-15 | | -2x-1=-3/4(8x+12)+2/3(6x+12) | | 7.32-5.9s=-5.63-6.6s | | 3(3-f)=5(f-10)+3 | | 3(-6r+10)=2(16-8r) | | 3(3-f)=5(f-10+3) | | 3(3-f)=5(f-10+3 | | 3(-6r+10)=2(16) | | 17-15j+15=8-18j | | 6x^2-2x=2x-9 | | 19s=7(3s-3)-9 | | -4x^2+27x=-2x^2-3x+144 | | 5x+(2x-3)+(x-1)5x=76 | | 25=q+29 | | -8x-15x2=0 | | .008y+3=3.8 | | -17+9f=17+7f | | N-2+5=-9-n |