If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+5x=0
a = 4; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·4·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*4}=\frac{-10}{8} =-1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*4}=\frac{0}{8} =0 $
| y=4+-3(-0.75) | | 2(3x+8)=-17+9 | | 6x+78=5x+8 | | y=4+-3(-3/4) | | 3x=(((-6x+4)*(-5))/10)+2 | | 3y-1.8=3y/1.8 | | 20=2+v | | f÷523.89=812.57 | | 1/4(t+6)=1/2(t-3) | | 8/9=9/p | | y=4+-3(2) | | r^2-7=18 | | -12+6x=x-6+8x | | 7x=4^2x+2 | | -6(2x-6)=12x+36 | | 29=2+v | | 3(x-5)+2x=x-4 | | 36/10=72/2x | | 3x=((-6x+4)*(-5))/10+2 | | -6x+44=-8 | | 6f+8.25=7.25 | | 5-b=9 | | 4(3q=1.75)=34 | | 6f+$8.25=$33.75 | | X+2=15+y | | x2−14x=−29 | | 2x(-)4(x(-)5)=-3+4x(-)26 | | 323+c=1049 | | 3x(+2)=15 | | /x2−14x=−29 | | 2+3n=5n+6 | | 16d=-42 |