If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+5x=520
We move all terms to the left:
4x^2+5x-(520)=0
a = 4; b = 5; c = -520;
Δ = b2-4ac
Δ = 52-4·4·(-520)
Δ = 8345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{8345}}{2*4}=\frac{-5-\sqrt{8345}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{8345}}{2*4}=\frac{-5+\sqrt{8345}}{8} $
| −9x+6=3x+4 | | 3e=4/3 | | W2+7w=18 | | 49=2x^2 | | j/3=4.5 | | 0=-16t^2-220t+100 | | 40-12x=25-15x | | -1/5w-4=-12 | | h/5=5.1 | | -5x-7+2x=14 | | 2.2x+(4.2x)3=4144 | | 3(x+1)=5(x+6) | | x(1/4x)=36 | | 4(m-9=2(m+1)-40 | | 3x+12=12+12 | | 12n-8-14n=-19 | | x=20/(5–1) | | 0=65.16t+4.75t^2 | | 6x+12=12+12 | | (x-2)^2+3=52 | | 7m−5m=18 | | (4^n)=256 | | 5y+128=3y-120 | | 7x-4×=+9x | | 51/6x+214=10 | | (x+1)^2-4(x+1)+2=0 | | (6x-6)(7x+1)=0 | | 13=w-14(2) | | 516x+21/4=10 | | v=4(3.14)(82)^2 | | x=1134+(x-7) | | 13=w-14|2 |