If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+60x-1080=0
a = 4; b = 60; c = -1080;
Δ = b2-4ac
Δ = 602-4·4·(-1080)
Δ = 20880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20880}=\sqrt{144*145}=\sqrt{144}*\sqrt{145}=12\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-12\sqrt{145}}{2*4}=\frac{-60-12\sqrt{145}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+12\sqrt{145}}{2*4}=\frac{-60+12\sqrt{145}}{8} $
| 4a+7=14+a | | 5x+10x+3=5x+6 | | K1=m2-m3 | | 14-3x=24 | | 2y-3-y=3y+5 | | 2×-3-x=3×+5= | | 5x+4(0)=9 | | 5x-3(x-5)=-2+5x-4 | | 4x+2x-8x=4x-2x | | -16=x/7-9 | | x/9+3=2 | | x/10-4=11 | | 4.1x-7.4=-11.5 | | 3/5a+2=8 | | 4x-4.26=8 | | 4x-4.26=9 | | 5x-3.6=5 | | x-3x+9=2x | | -67=18x+29 | | 27=32-15x | | 19-10x=-26 | | 0.75x+8x=15 | | 3b-1+2b=3(b-3) | | 45÷x=15÷19 | | 6-16=-9x | | (5^x-5^-x)/(6^x-6^-x)=8 | | 7=(2x+10) | | 15y-10=6y | | 15y-10=6 | | Y=3-5x/2 | | 9-(2x-4)=-2x+3x | | 16t^2-120t-2=0 |