If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+64x+45=0
a = 4; b = 64; c = +45;
Δ = b2-4ac
Δ = 642-4·4·45
Δ = 3376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3376}=\sqrt{16*211}=\sqrt{16}*\sqrt{211}=4\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-4\sqrt{211}}{2*4}=\frac{-64-4\sqrt{211}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+4\sqrt{211}}{2*4}=\frac{-64+4\sqrt{211}}{8} $
| x=x-1/2=1-x-2/3 | | 4x-2+30=180 | | -6x+2=-36 | | -6=(1+5x)=54 | | -4/13=5n | | -x-8=-9x-2 | | -3(3x+4)=-9x-12 | | 0.6m=2.4. | | -a/15=3 | | 3(y-1)=5 | | 9=-4x+506x-5 | | (3/2)m=(2/1) | | 4x-2/30+68=180 | | 5x-2/11=-7 | | -84=6-3(2+7v) | | 6.4=-1+x | | (2x+3)(2x-3)=7 | | 0.8-0.4w+0.1=2 | | 4+9a-3=11+2a | | 7.5x^2-x=-4.2 | | (-x^2)+3=-x-9 | | 8x-1=9+3x | | 7=s/3 | | f(3)=-9(3)+3 | | 4x-2+30+68=180 | | 4x(3+x)=1+12x | | -50=6(k=5)+5(-4-5k) | | 12x-(3x-9)=72 | | 7^5x^-4=7 | | .10x+.45(50)=27.5 | | 7.5x^2-x+4.2=0 | | 1+a=1+1 |