If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+6=46
We move all terms to the left:
4x^2+6-(46)=0
We add all the numbers together, and all the variables
4x^2-40=0
a = 4; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·4·(-40)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*4}=\frac{0-8\sqrt{10}}{8} =-\frac{8\sqrt{10}}{8} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*4}=\frac{0+8\sqrt{10}}{8} =\frac{8\sqrt{10}}{8} =\sqrt{10} $
| 2/5m=1/2 | | X^2+24x=-46 | | x^2+(2.6)x+3.6=0 | | (x+8)(5x-2)=0 | | 10x2−5=35 | | 4x^2-48x=144 | | 5(-3-x)=2(3-x)=14 | | 4x/10-8=6 | | 0.9-5x=-0.2 | | 4x-35=-11 | | (7x-20)+(4x)+90=180 | | 8x+14+2X+4=180 | | 210-210=4x | | 9g−2g=14 | | 4x2+3=27 | | 20-10n=5n-20 | | 2(x-9/2)=2x | | 68x^2+13x=5 | | 1.2x+5=8.6 | | 3y/4+13=40 | | 3–4x=5(x-3) | | (6-p)^2=47 | | 125+4r=189 | | 12=2+h119 | | 1/2(9x+4)+7x=5x+8 | | 9=11t | | 2x-15=2x+10-5x | | (4(6x-4))+(3(8x-6)=-1 | | (-12.05)-12.2n=(-7.9n)+13.38+14.56 | | 94/100=x/5 | | -4-7k=3 | | 8,400•60=p |