If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+6x-40=0
a = 4; b = 6; c = -40;
Δ = b2-4ac
Δ = 62-4·4·(-40)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-26}{2*4}=\frac{-32}{8} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+26}{2*4}=\frac{20}{8} =2+1/2 $
| 4x+8x-17=68-5x | | -2x-39=3(-6x-7)7x | | 2/x+12/x=7 | | 2(2x+4)=x-1 | | m2-5m+11=10 | | 2(x-3)+7=4(x-2)-2 | | 10m^2-40m=0 | | 6x-2(x+2)=2-3(x=3) | | 23=5(x=3) | | 23=5x(x=3) | | 6x/7=4x/5+2 | | 271=7+(n-1)*4 | | 2r+4=2(-2+r)+8 | | 3x^2-8x-65=0 | | (X+5)*x=54 | | 3(7a-5)-7=38+6a | | 3(x-4)^2-9=72 | | 3(v-2)-5v=-4 | | 8x+54=3× | | (x−3)(x−7)=0 | | (x+7)^2=81 | | 10^-7x+2=101 | | 33=7(u+5)-5u | | 18d^2-54d+28=0 | | 3/5x-11/7=(7x+1)/2 | | 5^4=9x | | 2t^2+63t+145=0 | | 2^x-3=4^3x-1 | | 17+3x=86 | | 3x|3=10 | | x-11/4=-2 | | (x+5)5=(10+7)7 |