If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+78x+144=0
a = 4; b = 78; c = +144;
Δ = b2-4ac
Δ = 782-4·4·144
Δ = 3780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3780}=\sqrt{36*105}=\sqrt{36}*\sqrt{105}=6\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-6\sqrt{105}}{2*4}=\frac{-78-6\sqrt{105}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+6\sqrt{105}}{2*4}=\frac{-78+6\sqrt{105}}{8} $
| x/6+18=26 | | (x+5)/2=0 | | u4– 2= 1 | | y4– 2= 2 | | 9=3v+6 | | -4(2x+5)=2(-1x-9)-4x | | 6x^2+6=-35 | | 100f-75=-50f+75 | | 9(-40x+46)=16(26-x) | | X(2+3)-x(5-4)=15 | | F(-2)=2x^2+5x+2 | | -7x-8+9x=-6 | | 81x-3=34+x | | 2x-17=11+2x | | x*2+10x+25=0 | | 168+6y=120 | | (2x+5)(-3x-9)=0 | | 1.5(x-1)=94.5 | | 4+(x-5)=18 | | 1+m/9=1 | | -3(14x+39)=5(31+5x) | | 2x+12=x+110 | | (8^9)p=8^18 | | 12x+28=3x+181 | | 3(x−14)+1=−4x+5 | | 7s+40=124 | | 4/5x+(-1)=-12 | | 6x+11=7x+143=180 | | v+3/3v-1/3v=1/6 | | x=22/3+(4x) | | Y-4=10(x-7) | | 3x+67+4x+50=90 |