If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+7x-15=0
a = 4; b = 7; c = -15;
Δ = b2-4ac
Δ = 72-4·4·(-15)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-17}{2*4}=\frac{-24}{8} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+17}{2*4}=\frac{10}{8} =1+1/4 $
| 28x/35=5x-10/35 | | 8d^2+15+26d=0 | | (-2y+7)^2=0 | | 15x+63+87=180 | | 8-(1/3)x=12 | | 15x+87=180 | | -29x+11+23x=-3(2x-5)-9 | | 8/y-2=12/2y-8 | | 5/9t=-2/3 | | (x/1.8)*100=50 | | 3x-11=5x-15 | | 18x+20=12x-18 | | 3(-2x+5)=-5(x+1) | | (-10)=n*8 | | 3x-10+(11x/3)=90 | | 6x^2-35x-1=0 | | -14=-8x | | 14x-6(3x+10)=7x-5 | | 82x=-1701 | | (x/16.7)*100=50 | | 9-(3+2x)=-16 | | x^+12×+20=0 | | x/16.7*100=50 | | x/5+7=3x/5 | | 3y+5y+6=26 | | 7(v-4=3(3+v)-1 | | (-14)=r*6 | | -h^2-4h+32=0 | | 4+7(1-6x)=-283 | | 5x+7x+15-3=180 | | X/15=-x | | X/15=-x/1 |