If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+7x-9=0
a = 4; b = 7; c = -9;
Δ = b2-4ac
Δ = 72-4·4·(-9)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{193}}{2*4}=\frac{-7-\sqrt{193}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{193}}{2*4}=\frac{-7+\sqrt{193}}{8} $
| 6x=2+38 | | 2x+2+120=180 | | 5x/2-5=7+x | | (x-5)/(x+6)=5/10 | | 9e+4=8e+14 | | (1/(x+6))+(1/(x+1))+(1/2x)=1/x | | 2(x-1)-4*2/3=1 | | 5/7x=8/10 | | -8q-4=-7q | | 4x-9=23/3 | | 15x+2x-7x-2=98 | | 6x+12=27.60 | | 14=4y-y^2 | | 2k^2=-5k | | 12y+6*3=12 | | 12y+6*3=y | | 55=5(6p-7) | | 4x+18=48−2x | | 40-2x=6x | | X2+12x=-37 | | F(x)=5/3x3+9 | | 2(3y+5=28 | | -5/3x^2+3x+11=-9+25/3x^2 | | x^2+x=6=0 | | 0.5x+3(x+2)=11.5x(2.5x+x/6) | | 8x-3x^2=-15-4x^2 | | k^2-12k-69=0 | | 2x=-92 | | -511=-7(7b+10) | | 3+4(x-2)-2x(4+2)=22 | | x/1.15=100000 | | x*1.15=100000 |