If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x+1=0
a = 4; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·4·1
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{3}}{2*4}=\frac{-8-4\sqrt{3}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{3}}{2*4}=\frac{-8+4\sqrt{3}}{8} $
| |2y-4|=10 | | 2/3/x=5/2.1 | | F(14)=2x^2+32 | | -8+-9=4+6x | | 21x+20-7x=117/3*3-13 | | F(4)=2x^2+32 | | 64=x2/4 | | 1=u/3-17 | | -2x2+5x-3=0 | | x/2+9=37 | | 7u=4u+24 | | 1.3(3.1r-10.4)=16 | | 2(v-6)-9=-3(-8v+8)7-v | | 2(v-6)-9=-3(-8v+8)7v | | -3v+22=-7(v-2) | | -11=-7v+2(v-8) | | 6x+4=x+4 | | F(x)=14x-3 | | P=0.25q^2-2q+8 | | 2/16=x/27 | | 50=t-1 | | 7/22=54/d | | w/3+3=w/4 | | 4x2+9x+5=0 | | 4(x–5)=1–3x | | 75x=32 | | 2+3+3X15=x | | 103x=x+4 | | Y=1/3x-1/8 | | 8x+3=6x-1 | | 8x+3=61-1 | | 9/2×1/63=a |