If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x-448=0
a = 4; b = 8; c = -448;
Δ = b2-4ac
Δ = 82-4·4·(-448)
Δ = 7232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7232}=\sqrt{64*113}=\sqrt{64}*\sqrt{113}=8\sqrt{113}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{113}}{2*4}=\frac{-8-8\sqrt{113}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{113}}{2*4}=\frac{-8+8\sqrt{113}}{8} $
| 4/7d+9=-11 | | x/5-5=9 | | x+(20/100)=100 | | 5n=3-5n | | 7(7x-1)=140 | | -6m-4=-32 | | x+20/100=100 | | 7(7x-1)÷10=14 | | (15)(2)(4+x)/4=45 | | 2x=+1 | | 6X(1/2b+3)+4(12-b)=5/6 | | -5+6k=19 | | 9w+4=49 | | x/15=1.5 | | 10m+4=24 | | 5y+3=106 | | x/11=1.5 | | 1/3a-6=-13 | | x/440=3,520 | | a+10=6a+7 | | 180-x=2(x)+6 | | 3x-x+4=22 | | 3/4(8x−4)=4−1/2(6+2x) | | 6y-4+y=24 | | 8x+3+2x+7=90 | | x/12=1.5 | | 36.2+x=440 | | 320=x/40 | | 5x+19=36 | | 26/32=78/x | | 12x^2-13x-22=0 | | y=+5−y+4 |