If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x-8=0
a = 4; b = 8; c = -8;
Δ = b2-4ac
Δ = 82-4·4·(-8)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{3}}{2*4}=\frac{-8-8\sqrt{3}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{3}}{2*4}=\frac{-8+8\sqrt{3}}{8} $
| -9/2x-4=23 | | 7n=5-9n=8-2n-3 | | 3x-4+2-6=20 | | 3(z+11)+4(z-3)=7(z+3) | | -16=k/2-9 | | 150x=500 | | 3t+2+4=6 | | -(q+4)+2=-138 | | j-55=3.4 | | 4+x=x/3 | | 8z+10=-6 | | 2^(x-2)=5 | | 9(y-15)=9y-135 | | 4+3t+2=6 | | (2x-4)^2-38=0 | | 2^x-2=5 | | 21+4x=−x+2 | | 1/2(2x-3)=6-x | | 4r2+7r–4=0 | | X+6/2=x+3 | | 3/7+b=7/4 | | 2(4+3)=2x+6 | | 4+3n-2=6 | | 3y+5/2=35/2 | | 9w+7=-10w | | 3/4+b=4/7 | | 1/2n-9=5+4 | | 5x+3(1/4+x)=3/4-5x | | 0.65x=0.58*5x | | 7(2e-7)-3=6+6e | | 3x–2x=19 | | X/9=9/x |