If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x=96
We move all terms to the left:
4x^2+8x-(96)=0
a = 4; b = 8; c = -96;
Δ = b2-4ac
Δ = 82-4·4·(-96)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-40}{2*4}=\frac{-48}{8} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+40}{2*4}=\frac{32}{8} =4 $
| 5+4y-20=2y-10+5 | | 10*x=125 | | -2x-125^x=7 | | 6(3g-5)-7g=25 | | F(x)=-x2-2x+12 | | -x^2-9+5=0 | | 7(4-2f)=28 | | 6x^2-1.5=0 | | 4b-5b=7 | | 7x-21=2x+7 | | -5(6e-1)=-55 | | (x–3)^2=16 | | (x–3)2=16 | | m-3=7= | | -4.2x+3.9=4.32 | | 2.4/1.8=2.7/k | | 2y+1=17= | | x+3=12= | | 8+9/20x=180 | | v–6=11 | | -4(8+5d)=8 | | 2(4x+3)+3(2x-1)=317 | | 4(x+1)−2(x−5)=36 | | y=500(1+0.08)^20 | | -4s+-7=9 | | 3(4x-3)=57 | | 12x+6+3x+5x+5=180 | | x+3x+x3x=64 | | r+25=83 | | 5-2p=15 | | 4k-12/2=8 | | 9.5/0.45=n |