If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+90x-644=0
a = 4; b = 90; c = -644;
Δ = b2-4ac
Δ = 902-4·4·(-644)
Δ = 18404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18404}=\sqrt{4*4601}=\sqrt{4}*\sqrt{4601}=2\sqrt{4601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{4601}}{2*4}=\frac{-90-2\sqrt{4601}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{4601}}{2*4}=\frac{-90+2\sqrt{4601}}{8} $
| -8+n/6=6 | | -4=1/4x+2 | | 2x-8=3x-467+8 | | 4x2+90x-684=0 | | 6x+30=26=6=18- | | (2+x)(3x-2)=0 | | 6x30=26+6 | | 6x+302x=6 | | 3(2x-5)-(2x-4=6-(4x+5) | | x-4.1=8.9 | | -9-3x=27 | | 2,7m=8.1 | | 1.3-0.4z+z=-1.02 | | 6y(2y-5)=0 | | 2g^2+6g−4=0 | | 16+-8x=5-9x | | 4d2+8d+4=0 | | 6f^2+4f-6=0 | | 7-3y=5-4y | | 720x=660 | | z=6-4 | | 15/3=s/50 | | 5/9=b/100 | | 4(x+9)=6(x+2.5) | | -5(x+4)+10+12x=4(x+2) | | -5(6+4)+10+12x6=4(6+2) | | 6x-30+90+3x+30=180 | | 2x+3=9/4 | | x−4=1 | | 10-4x+2=x-3-4x | | -2x5=6-x-2x | | C=6/(6+12)x180 |