If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+9x-5=0
a = 4; b = 9; c = -5;
Δ = b2-4ac
Δ = 92-4·4·(-5)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{161}}{2*4}=\frac{-9-\sqrt{161}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{161}}{2*4}=\frac{-9+\sqrt{161}}{8} $
| -4x2+9x-5=0 | | (2x+3)=x-4 | | -11x-8=-118 | | 9x-2=-38 | | (1/10)+(1.6)(2.1)=x | | -7x+11=-3 | | -68+4y=52 | | -24-12x=48 | | 8x=48−8- | | 8x=48−8x | | -13-3z=53 | | 2x+19=35−6x | | x=11/5-2(0.8) | | 4x+8=78−6x | | -11y-41=80 | | -9+2x=43 | | 3x+20=707x | | 2x+14=64−3x | | 10x=26−3x | | 5x²-58x+33=0 | | 3(x+3)+6=3x+15 | | .25(8x+16)=4(x-5) | | 2x-10=x•5 | | 4(s-8)=32 | | 3/5(1-w)+1/5w=2/5(w+1/2) | | 3/5(1-w)+1/5w=2/5(w+1/2 | | (f+2)+6=5-2(f-3 | | 3x^2-31x-42=0 | | X^2-239x-7060=0 | | (1.80)*(1+x)3=3.20 | | a+50=38 | | 10*x=6000 |