If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+9x-63=0
a = 4; b = 9; c = -63;
Δ = b2-4ac
Δ = 92-4·4·(-63)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-33}{2*4}=\frac{-42}{8} =-5+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+33}{2*4}=\frac{24}{8} =3 $
| 4x2+0x-63=0 | | 192-y=52 | | 100x+6=353 | | 2n-3n=13 | | x-2(2-3/2x=2(4-x)+10 | | (7x-5)-4(2+5x)=10(2-x) | | -7w+5(w+2)=28 | | 4(x+3)=3+2+x | | -2(2f-4)+18f=16-3(7f+2) | | 2(3+x)=35 | | (4x+19)+(8x-7)=180 | | (5x-1)-(2x+4)=0 | | 3x÷10-4=10 | | 100+6x=356 | | 2t+8=9t–6 | | 4/3a=-6 | | 22=4(x+8) | | 98=g+3 | | -9+6x=x-64 | | 5p+9=5+3p | | 7x+8=28+3x | | 3f=90 | | p-43=50 | | (X-1)/3=(3x+1)/12 | | (5x+6)(3x-2)=180 | | 12x+48=10x+40 | | 6/7x-1/5x=23 | | 20-2(5-p)=8 | | 71=t-25 | | -7b+3=-4b+5-3b+2 | | -6-9x=-3(7x+2) | | 10x+4=4-11x |