If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+x-18=0
a = 4; b = 1; c = -18;
Δ = b2-4ac
Δ = 12-4·4·(-18)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-17}{2*4}=\frac{-18}{8} =-2+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+17}{2*4}=\frac{16}{8} =2 $
| 4+x=8(x-3 | | 23x=2x+6 | | 20z-8= | | 165=25x | | 13x+10x+20=90 | | 5(5x-4)+7=-2 | | −11=7−2c | | 4x=2(x+8 | | -3x+3=-157x+6x | | 12-3x+11=24+3 | | +84x=2(x | | 37.2=x-13.8 | | 210=137-v | | P(5)=10.41(p=0.06) | | 100.7=-1.85t^2+20t+1 | | |3x-17|=-13 | | 111.51=-1.85t^2+20t+1 | | 5(4x+16)=20 | | (1/3)p-3=144 | | 5(3x=2(x+8) | | 2b+7=34 | | 5u=49 | | 6n^2-9n=60 | | -3(-9u+6)-6u=3(u-9)-5 | | 4(2x+3=36 | | 11=-2x+3 | | 0.7(3s+4)1.1=7.9 | | -16=-7v+3(v+4) | | -6(b+3)+6b=-6(-4+3) | | 5|4x+16|=20 | | 5w-7=-21 | | b+5b+2=20 |