4x2+x2+x(x+6)=432

Simple and best practice solution for 4x2+x2+x(x+6)=432 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x2+x2+x(x+6)=432 equation:



4x^2+x2+x(x+6)=432
We move all terms to the left:
4x^2+x2+x(x+6)-(432)=0
We add all the numbers together, and all the variables
5x^2+x(x+6)-432=0
We multiply parentheses
5x^2+x^2+6x-432=0
We add all the numbers together, and all the variables
6x^2+6x-432=0
a = 6; b = 6; c = -432;
Δ = b2-4ac
Δ = 62-4·6·(-432)
Δ = 10404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{10404}=102$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-102}{2*6}=\frac{-108}{12} =-9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+102}{2*6}=\frac{96}{12} =8 $

See similar equations:

| x-x/2=3-4 | | 2(x+3)+4x-2x=30 | | 56x^2-62x-63=0 | | 7(2x-5)-4(5x+3)=-33 | | 20-12x=7x | | 1/2(2x+4)=32 | | 9q–8=4+7q | | 1/3x-(x+1)=1/4x+1/2 | | -17-3(2x-13)+24=0 | | 11x^2-10x+2=0 | | 5x/2-3=3x+8 | | a^2=25/121 | | 3(4x+1)+3x=2x-23 | | 5(3x-1)-6=4 | | (3x-7)+4=14 | | 7x+1-2(4-x)=12x-8 | | -3(5u-4)+6u=5(u+4) | | 1,024=h^2 | | -3x-2(7x-4)=2(x+4) | | -6x-13=-7x-14 | | 8x-17-2x=10x-19 | | (4y)-16)+32/2)=0 | | 9(n+3)=7-3 | | 5x=8+3(2x+3) | | 5x–2=7x+10 | | 13x-20+7x=180 | | 4x+3+4x+3=12x | | -6x-13=-7х-14 | | 4x+1=3x=5 | | -6(3-5n)+8(2n-2)=-80 | | Y=33,2x+75,2 | | 2m+8=5m-4 |

Equations solver categories