If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+x=135
We move all terms to the left:
4x^2+x-(135)=0
a = 4; b = 1; c = -135;
Δ = b2-4ac
Δ = 12-4·4·(-135)
Δ = 2161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2161}}{2*4}=\frac{-1-\sqrt{2161}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2161}}{2*4}=\frac{-1+\sqrt{2161}}{8} $
| 5l*5=180 | | Y=2x+4(1,6) | | 48=8+r | | -6x+5=3x+12 | | 32-7v=6(-v+4)-3v | | –17=–6+2a+7 | | 4x-2(x-2)=18 | | -v=-10.98 | | 10.4+x=2.6 | | -10x-6(-10)=-10 | | -6x-4(-2x+4)=-28 | | Y=-0.5x+60 | | -11+n=-11 | | 2/5(x+4)-7=-16 | | y+-0.81=-4.91 | | 6+x-8=16 | | Y=1.06x+1.33 | | 4.6x-4.8=13.6-6.8x | | 5(n+1)=+2 | | s-2.9=13.5 | | 126+131+x=180 | | -9b=819 | | 14x-7=27 | | 9w–9=–18 | | -2x=192 | | 2(x+4)-10=3(x+2)+3 | | 3.45g=0 | | 3-12n=7n^2 | | 3(12w+8)–6=18 | | 9k^2+9=-11k | | 3(12w+8)–6=18 | | x(3+2)=64-x-2x |