If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-10=10+2x^2
We move all terms to the left:
4x^2-10-(10+2x^2)=0
We get rid of parentheses
4x^2-2x^2-10-10=0
We add all the numbers together, and all the variables
2x^2-20=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $
| F(x)=14x+5 | | 4-4p=-36 | | -2-3+4x=65 | | 9x+32=98 | | 150/n=3 | | 10^x-10^-x=1.5 | | X^2+13/3x-56/36=0 | | 9n^2+2n+13=3 | | 7x^2-14x+49=-7 | | 7x^2-14x+56=0 | | 5x^2-10x+120=0 | | 5-x2-18=56+3x-45 | | 3+x3=x-64 | | 5-x2=3x-45 | | 10x=7x-74 | | 5x2=4x3+49 | | 5x2-14=43+x | | 1+6x7=23+9x | | X-4x7=23-2x | | 11+3x5=23-7x | | 5+x3=6-7x | | x-8-2x=24 | | 2z-6=-2 | | 0.1(2x-1)=3/10(x+6) | | 7w+21=49 | | 9z-81=-9 | | 9x+72=144 | | 9u+45=99 | | -2z+7z=36 | | 3x-20=x-6 | | 6u-18=24 | | (3x-23)=34 |