If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-12x+5=0
a = 4; b = -12; c = +5;
Δ = b2-4ac
Δ = -122-4·4·5
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8}{2*4}=\frac{4}{8} =1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8}{2*4}=\frac{20}{8} =2+1/2 $
| 3(s+-1)=-12 | | _17w_(-10)=-7 | | 11-m=3 | | 3(3x-1)=2(3x+5) | | u-13=-5 | | -9h+13h+1=-11 | | 2=2(y-8) | | w^2=32 | | 240+130x5=125+155 | | 12x-4=100-2x | | -3(y+8)+3=9 | | 2(f+-7)+9=5 | | -17=-2+3z | | 4w-5w=17w= | | 16-x=5x+12-2x=24-x | | 6x^2-3=5 | | 3h+-5=-20 | | d/2+-6=-8 | | 10(s-10)=-145 | | 2+4(x+2)=-40 | | 1/4x-5/6=1/2x+1/3 | | 15=18-h | | 8s-3s-2=18 | | 3(v-13)+5=17 | | 9a+24=-3a | | 3(s-4)+1=10 | | 8=q/8 | | z+3+4=5 | | -3(g-9)+4=4 | | -6(3-n)+3n=-81 | | 2(r-46)=72 | | 8(4s+3)=312 |