If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-12x-28=0
a = 4; b = -12; c = -28;
Δ = b2-4ac
Δ = -122-4·4·(-28)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{37}}{2*4}=\frac{12-4\sqrt{37}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{37}}{2*4}=\frac{12+4\sqrt{37}}{8} $
| 15x+5=10-5x | | (2x+8)=(x+7)=(3x-9) | | 3x-9=8x+1 | | (a+2)3+4(2a-1)=13 | | (x/3)-(3/4)=(x/5) | | 2(5x-3)=36 | | d-11=(2d-7 | | 5+(2/3)x=(1/2)x-2 | | 0,8=1,42-x | | 5x+4(x-3)=36-3x | | 4x=(2*4)(5*2)(3*6) | | -3x-5=9x+6 | | 4x+2=2x+13 | | 12x=16(x-5) | | 6+1/2r=3-2r | | n/12=5/6 | | a+2=2a-4 | | 3(a=2)-(a-1)=17 | | 6/n=5/12 | | 8(4s+6)=272 | | 2(a-10)=2 | | (U-10)x10=80 | | (Q-7)x5=20 | | (E+1)x4=8 | | 5x=(10*4)(3*2) | | 2a-(2a+a)=2 | | 5x=(50*10) | | 2x/5-4=3 | | 2x^2-3=-1/2x^2+7 | | 9x=(90-27) | | 5x-2/9=9 | | 5x=16/2=x+5 |