If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-12x-40=0
a = 4; b = -12; c = -40;
Δ = b2-4ac
Δ = -122-4·4·(-40)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-28}{2*4}=\frac{-16}{8} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+28}{2*4}=\frac{40}{8} =5 $
| (1.2+4.9q)(7)= | | 3x=4-x, | | 6x-2)2+8x)=10+4x | | 7x-11=-24 | | 11/5+4x=9 | | 5x+(2+4x)/2=22 | | 7(n-80)=49 | | 11/110=h/20 | | 11f=13 | | 0.5x+2=0.7x | | p+8=4L | | -1+1-3x-4=-4=-4x-x | | 0.19u=4.75u= | | –2(3x–1)=–6x–12(3x–1)=6x–2 | | w-9.3=7.59 | | 7(4x-8)=168 | | 1/2(4x+6)=(9x-24) | | 11(6)+y=36 | | -6(6x=9)=-3(12x+18) | | 2x+6-3x–12=-3 | | 2(x+3)=4(x=1) | | 3/7x+1/4=1/4x-5/7 | | 3x-50=x+31 | | 9x-3.4=-21.4 | | 6(s-82)=54 | | -(7y-9)=2*(9-5y)-3 | | 100=5u | | 50y-350=-700 | | 12x+12=1/2(4x+64 | | 6(3+t)=(2t+5)2 | | 5x+3=3(8x-18) | | 8×5y*7=2y+4+2498 |