If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-14x+11=0
a = 4; b = -14; c = +11;
Δ = b2-4ac
Δ = -142-4·4·11
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{5}}{2*4}=\frac{14-2\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{5}}{2*4}=\frac{14+2\sqrt{5}}{8} $
| 3+8y-12+7y=7y-2y+4+7 | | 3x-(-7x+7)=8 | | 21=15=3k-2/5 | | 2ww=18 | | (34+55+1x)=90 | | w=18. | | 38-4(2x-1)=2 | | 72+4x+2x=280 | | n×17=51 | | -X2+3x+28=0 | | 5(x-3)=7x-15-2x | | 6(x-1)-4=2(x+9) | | 7x+3+3+8x=6x+7+4x | | (5x-1+61)=90 | | 6(×-1)-4=2(x+9) | | 25+x=-3(x+7) | | -8(1-4x)=28 | | 150-2x=-5x | | 71=(4x-1) | | 8x-1=638 | | -4(x+4)=5x+47 | | 5^4x-5=25 | | 2w+40=5(w+5) | | 3x+(-5)=-17 | | -136=-8(7-2x | | -2(1-6v)=94 | | 5x-22=127 | | 5x-22=117 | | 3x+(-1)=11 | | 5x-22=53 | | 2(x-3)^2-7=43 | | 3x+7x+9=12x+3+2 |