If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-15x+9=0
a = 4; b = -15; c = +9;
Δ = b2-4ac
Δ = -152-4·4·9
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-9}{2*4}=\frac{6}{8} =3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+9}{2*4}=\frac{24}{8} =3 $
| x-x/x-2=0 | | -3(2t-4)+2t=8t-7 | | 1/5(10x–20)=x–3 | | .a/8=3/4 | | b^2+6b-79=-7 | | G(x)=-3x-8G()=10 | | -47+7=-10y+37 | | -4y+y=-10y+37 | | -8c^2=800 | | -4+7y-3y+5=6 | | 22-3x=2(x-6) | | X^2+200x-10000=0 | | 3y+5=2y-20 | | X^2+200x-14400=0 | | 2(c-6.2)+5=4.68 | | 6x+12=8x+8-12 | | 5x-4=3-21 | | 12y+3=6y-15 | | 7(b-8)=(b+12) | | 7j^2+3=255 | | 9(a+4)=(a-3) | | 3x+40=1x+50 | | 5b-1=6b-9 | | 6.66=2.83(t-6)+1 | | -2v=v+3 | | X-5+3x=2X+2(X+3) | | -2(g-3)=-8 | | 12x-21=105 | | 7y-3=4+15 | | 6b-4=2b+16 | | 14x+26=84 | | 8k^2=392 |