If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-16x+10=0
a = 4; b = -16; c = +10;
Δ = b2-4ac
Δ = -162-4·4·10
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{6}}{2*4}=\frac{16-4\sqrt{6}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{6}}{2*4}=\frac{16+4\sqrt{6}}{8} $
| 4x²+28x-48=0 | | 7-5(3x-9)=22 | | 6(x-6)-3(2x-9)=-9 | | 5x150=525 | | X^10-1024x+1024=0 | | 0.15x=0.25x-1875 | | 4g+1.6=13.6 | | 5x-3=3x=8 | | 7z-2=5 | | 5s-38=62 | | 50t^2+100t+80=1000 | | 3/4x-11/10=4/3x-12/5 | | 5/3x-1=4/2x | | 3n+3/5=10 | | ^2-36/2x+12=0 | | -1,7(x+2)-0,3x=2(2-x) | | 2/3*y=4/9 | | 1,7(x+2)-0,3x=2(2-x) | | 2x+33=4x+22 | | 0.463x-x=1.38 | | 2/x+x/x=1 | | f(×)=×-10 | | 3x+6x+9x+18=18+17+5-3x | | -2/3m-3/4=-1/2m+3/4 | | 15x-2x+40=5x-2x-50 | | 4x+20=-6x+10 | | 14x-4x(4*8-2)=4*8 | | 2(x+1)²+(x-8)²=45 | | 4m2+20m=0 | | 2x-24+8=40 | | 4x-(2-4)2+24=0 | | x×5=40 |