If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-200=0
a = 4; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·4·(-200)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*4}=\frac{0-40\sqrt{2}}{8} =-\frac{40\sqrt{2}}{8} =-5\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*4}=\frac{0+40\sqrt{2}}{8} =\frac{40\sqrt{2}}{8} =5\sqrt{2} $
| (-x+2)^2-4=12 | | y²-9=0 | | 2x+1x=24 | | 4x(-5x)=7 | | x20-20=20 | | 2y²-9=0 | | 2/3x+8=4 | | 0.25x2+-0.5x=0 | | 28y+4=3y² | | x(2x-1)=100 | | (5x^2+24x+19)/2=6456 | | 5(2x+0.4)+6(x-1.5)=0 | | 7(2x-3.9)=4(3x+1.3) | | (5n^2+24n+19)/2=6456 | | X²+(x+1)²=85 | | 3y⁴-3y²+3y+60=0 | | X²+5x+6=20 | | _1.3x+5.2=0 | | 11+22x=0 | | (x2+3x+-5)+(-3x2+-8x+9)=0 | | x*0.15=90 | | 9-4b=15 | | 8x²+4x-8=0 | | 2x=x+20=2x+10 | | 13-11b²=0 | | 11b+2=0 | | 2b-11=0 | | −8−x=−3(2x−4)+3x-8-x=-3(2x-4)+3x | | 96+2w=2(80−3w) | | 7x-(2-x)=9-(2x+1) | | 7x-(2-x)=9-2x+1 | | 6b-10=0 |