If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20x+1=0
a = 4; b = -20; c = +1;
Δ = b2-4ac
Δ = -202-4·4·1
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8\sqrt{6}}{2*4}=\frac{20-8\sqrt{6}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8\sqrt{6}}{2*4}=\frac{20+8\sqrt{6}}{8} $
| x÷9=6 | | -9(x+5)=3(x-23 | | y=-4+(1/2) | | 6p+5=4p+11 | | 3(x-7)=-10 | | -18=(-2x+30) | | 3(x+7)=-10 | | -6x=81 | | 9(x-7)=-3(x+52) | | 9n-3/4=175 | | y+6-(3)*y=15 | | x-0.20=15.00 | | 9x+12=8x-6 | | -5(u-6)=-4 | | 10^10x=100 | | 2y+60+3y+12=180 | | 9(r-91)=41 | | 5k-5=11 | | 6(s+14)=58 | | 3x+1x=58 | | 12=3y-3 | | v+13/9=6 | | 2y+1.8=4y+-4.4 | | (6)*y+1=(3)*y=-17 | | -94=-9f+-22 | | 1.5x(x+7)=11.25 | | 39+0.20x=95 | | x/3=-98 | | K=10t-18 | | q/3−2=2 | | (X-2)(2x^2+11x+10)=0 | | x-10=-64 |