If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20x+4=0
a = 4; b = -20; c = +4;
Δ = b2-4ac
Δ = -202-4·4·4
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{21}}{2*4}=\frac{20-4\sqrt{21}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{21}}{2*4}=\frac{20+4\sqrt{21}}{8} $
| 18-126=2(-8x+2) | | 42x+18=-24+40- | | -10-(5m+8)=-33 | | 70+90+60+90+x=360 | | 60=15(c) | | 66=-7a-(9+8a) | | 8(x)=17 | | 60=(c)15 | | 60=4x+72 | | 18(a)=72 | | 2x²+3x+3=0 | | -2(x-3)+4x=7+1 | | 2(50)-10+(50)+40+y=180 | | (y-3)^2+(y+4)^2/9=1 | | 13x+10+2x/5=-5 | | -31=9a+3-2a | | 2x2+4x–6=0 | | b÷-3=2 | | 5x+7+x-9x=10 | | -(-8x-1)=88-15 | | y3=64/729 | | 24/¼=n/⅓ | | -0,04x+1,32=1,04 | | 4x+7=55° | | 8-5b-1=52 | | 6x-2/445(15x+20)−7x=56(12x−24)+6=x-2 | | 3x3+4x2−5x+6=0 | | 13x2x+8=12x+5 | | ⅓(9k+3)=-2(k-8) | | -4=-3x-1 | | y=4+ | | -81=-4x-5x |