If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-23+19=0
We add all the numbers together, and all the variables
4x^2-4=0
a = 4; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·4·(-4)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*4}=\frac{-8}{8} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*4}=\frac{8}{8} =1 $
| x+9-x=29 | | x+.8x=48.5 | | 18r^2+18r-60=0 | | 16(4-3m)=96((-m/2)-1) | | (5x+3)=(8x-4)+90 | | j-830=-592 | | 216=t-239 | | -27=2(2x-1)+7 | | y/16=20 | | 4(3x-5)=5x+8 | | d-96=3 | | 3(2x-3)=3x-36 | | 44=b+-10 | | j/9=-9 | | 3x-6=3x—3 | | -4=m+14 | | 12y^2+55y+63=0 | | v+-6=77 | | 3x+4=(x+18)/2 | | 9=q+5 | | -15b+21=-5b-19 | | q—2=9 | | 38-7p=18+3p | | 4t+32=-4t-16 | | 48-3b=-9b | | -7s-6=-8s | | 6x-3-5x=4+2x | | -7s-6=8s | | -6-8k=k+3 | | -8s=-9-5s | | -4t-9(t-10)=-66 | | 2x^2+5x+1/2=0 |