If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-23x+25=0
a = 4; b = -23; c = +25;
Δ = b2-4ac
Δ = -232-4·4·25
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{129}}{2*4}=\frac{23-\sqrt{129}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{129}}{2*4}=\frac{23+\sqrt{129}}{8} $
| 15u-13u+4u+3u+u=10 | | 5x/7+10=2 | | (8x+28)=180 | | 24x-4=(24x+15)-19 | | 45-k=27;17,18,1 | | 12-5x=13x-7 | | 24x-1=(24x+5)-19 | | 0.11x=4 | | 18b-12b=18 | | 6m-3=22 | | h+9=21,10,11.12 | | 7k-6k=19 | | -13+c=-45 | | 3^(5x+6)=1/81 | | 6+9w+5w=-1 | | (5x+4)/(5x-7)=0 | | h+9=2 | | 2d−22=40 | | 5(j+14)=100 | | v4+ 7=11 | | n/4+14=18 | | n/4+ 14=18 | | n4+ 14=18 | | 3xX+8=2 | | 5m-3m=2m | | 2(8x-1)=40 | | 84x=-2 | | a+5/3=13 | | 5x²-2x-9=0 | | x/4=2/5+x/2 | | 10(1.375)^17t=70 | | 7-2m-7=31-7 |