If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-25=35
We move all terms to the left:
4x^2-25-(35)=0
We add all the numbers together, and all the variables
4x^2-60=0
a = 4; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·4·(-60)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{15}}{2*4}=\frac{0-8\sqrt{15}}{8} =-\frac{8\sqrt{15}}{8} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{15}}{2*4}=\frac{0+8\sqrt{15}}{8} =\frac{8\sqrt{15}}{8} =\sqrt{15} $
| 8+3x-2x=14 | | x-1.9=8.42 | | 7/2x+12=180 | | -27=-7-4z | | 4w–13=11 | | -6x+7+2x=27 | | 8(x+3)+4x=3(4x+8) | | 0.12f+0.021(17,000-f)=400 | | 5+6u=–49 | | 17-1(x+4)=-3(x+1) | | x/3+3=x/5-1/3 | | 4h-2=-(2h+6) | | 10^(2x)-5(10^x)+6=0 | | 5x+2=11x-3(x+7) | | 0.3x+0.7=0.8x-1.8 | | 5e+2(6-4e)=9e | | (9x-3)+(8x+9)=90 | | 2(5x+2)=4x+10 | | 3m+12=14 | | -(7x-4)+6x=14-20 | | (x−9)^3/4=8 | | 19x+15=19x+16 | | 18-x-3=2(4x-3) | | 6x-12(6x+2)=-8(5x-10) | | 3x+27x-6=6(5x+3) | | 24^2=144+12x | | -6(10b+4)-2b=-2(11b-8) | | 12d+350=1010 | | 7(x+5=84 | | 4(a-9)=5(4-2a) | | -9+4x-3=-2(5x-3) | | 58=10x+5 |