If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-2=0
a = 4; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·4·(-2)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*4}=\frac{0-4\sqrt{2}}{8} =-\frac{4\sqrt{2}}{8} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*4}=\frac{0+4\sqrt{2}}{8} =\frac{4\sqrt{2}}{8} =\frac{\sqrt{2}}{2} $
| (x-5)(x-4^2)=0 | | 4x−4=5x | | 3x+5=–10 | | 2x-5x+6=12 | | 6(7x+4)=-60 | | x-6.5=-4.12 | | 20+5b/10=-27 | | 15x+2=2x+12 | | 20+5b/10=27 | | 9(c-4)=63 | | -2n-5=1 | | 2x+1+x-16=180 | | -106=5x+49 | | 4-8x+8=9x-3x-2 | | 2xx=16x2 | | 1.5x+7=-8 | | 40x+450=975+65x | | x/2=0.3 | | 2(x+7)+10x=86 | | -2/5x=—3 | | 5(2x-9)=30 | | (10+2.50h)=(7+4h) | | 7(x-4)+32=12x+54-3x | | g(-27)=5(-27+11) | | m=-5(4+5m)+2 | | -71=3x+31 | | 3x+7=2/3 | | 5(x+9)=10(x-5) | | 0,2=15p÷60+15p | | 2x+10+x-20=90 | | -32=-8v+6(v-7) | | 25=4n-3 |